Abstract

Fuzzy decision trees are one of the most popular extensions of decision trees for symbolic knowledge acquisition by fuzzy representation. Among the majority of fuzzy decision trees learning methods, the number of fuzzy partitions is given in advance, that is, there are the same amount of fuzzy items utilized in each condition attribute. In this study, a dynamic programming-based partition criterion for fuzzy items is designed in the framework of fuzzy decision tree induction. The proposed criterion applies an improved dynamic programming algorithm used in scheduling problems to establish an optimal number of fuzzy items for each condition attribute. Then, based on these fuzzy partitions, a fuzzy decision tree is constructed in a top-down recursive way. A comparative analysis using several traditional decision trees verify the feasibility of the proposed dynamic programming based fuzzy partition criterion. Furthermore, under the same framework of fuzzy decision trees, the proposed fuzzy partition solution can obtain a higher classification accuracy than some cases with the same amount of fuzzy items.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.