Abstract

In Additive Layer Manufacturing, the layer-based nature of the process results in error in the final object, termed staircase error. This error can be reduced by using a smaller layer thickness, and hence more layers, to print the object. However, in 3D printing with stereolithography, the print time is mostly determined by the number of layers, since the movement of the laser in the X-Y plane is much faster than the movement of the build platform. Therefore, using finer layer thicknesses can significantly increase the print time. In this work, we propose a novel adaptive slicing algorithm that balances accuracy and print time. The proposed, near-optimal, dynamic programming (DP) based algorithm for adaptive slicing minimizes the number of layers subject to a global volumetric error constraint. Our approach reduces slice count by up to 36% (52%) compared to a state of the art adaptive slicing (uniform slicing) method under the same volumetric error. The results were tested on Formlabsunder the same volumetric error. The results were tested on Formlabs Form1+ SLA-based printers. The print time was improved by up to 32% (53%) for a selection of objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.