Abstract

As described in the introduction of this paper, the state vector x <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> , representing the present state of a sampling control system, is assumed to satisfy a difference equation <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x_{n+1} = T(x_{n}, r_{n}, \upsilon_{n})</tex> , where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}</tex> is the control vector of the system subject to random disturbances r <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> . The random variables r <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> are assumed to be independent of each other and to be defined in a parameter space in the following manner: Nature is assumed to be in one of a finite number, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> , of possible states and each state has its own parameter value, thus specifying uniquely and unequivocally the distribution function of r <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> . It is further assumed that we are given the a priori probability <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z =(z_{1}, . . . , z_{q})</tex> of each possible state of nature, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i= 1,2, . . . , q,\sum\min{i=1}\max{q} z_{i}=1, z_{i} \geq 0</tex> . Given a criterion of performance, the duration of the process and the domain of the control variable, a sequence of control variables { <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}</tex> } is to be determined as a function of the state vector of the system and time, so as to optimize the performance. The sequential nature of the determination of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}</tex> is evident here, since the stochastic nature of the problem prevents specification of such a sequence of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon</tex> 's as a function of the initial state and time. By means ot the functional equation technique of dynamic programming, a recurrence relation of the criterion function of the process, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> , is derived, where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</tex> is the state variable of the system when there remain <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</tex> control stages. When <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> is taken to be two and the criterion of performance to he <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x_{N}^{2}</tex> with the constraint on the control variables <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\sum\min{i=0}\max{N-1} \upsilon_{i}^{2} \leq K</tex> , where x <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> is the final state vector of the system, it is shown that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> is the form <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">w_{n}(z)x^{2}</tex> and the optimal <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}(x, z)</tex> is linear in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</tex> , as might be expected. The dependence of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}(x, z)</tex> on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</tex> is investigated further, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">w_{n}(z)</tex> is found to he concave in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</tex> . Explicit quadratic forms for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">w_{n}(z)</tex> are obtained in the neighborhood of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z = 0</tex> and 1. The optimal <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}(x, z)</tex> is found to be monotonically decreasing in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</tex> . When the domain of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}</tex> is restricted to a finite set of values, as in contactor servo systems, no explicit expressions for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\upsilon_{n}(x, z)</tex> are available. However, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> is still concave in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</tex> and approximately given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">zk_{n}(x, 1) + (1 - z)k_{n}(x, 0)</tex> . By solving the recurrence relation numerically, this approximation is found to be very good for moderately large n, say 10. This means that if one has explicit solutions for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p =p_{1}</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p = P_{2}</tex> , then one can approximate the criterion function for the adaptive case where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Pr(p =p_{1})= z</tex> by a linear function in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</tex> as shown above. This provides fairly good lower bound on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k_{n}(x, z)</tex> , and in turn serves to determine an initial approximate policy. A concept of suboptimal policy is introduced and numerical experiments are performed to test suboptimal policy suggested from numerical solution. The system behavior under the suboptimal policy is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.