Abstract

In this paper we propose an algorithm for the constrained two-dimensional cutting stock problem (TDC) in which a single stock sheet has to be cut into a set of small pieces, while maximizing the value of the pieces cut. The TDC problem is NP-hard in the strong sense and finds many practical applications in the cutting and packing area. The proposed algorithm is a hybrid approach in which a depth-first search using hill-climbing strategies and dynamic programming techniques are combined. The algorithm starts with an initial (feasible) lower bound computed by solving a series of single bounded knapsack problems. In order to enhance the first-level lower bound, we introduce an incremental procedure which is used within a top-down branch-and-bound procedure. We also propose some hill-climbing strategies in order to produce a good trade-off between the computational time and the solution quality. Extensive computational testing on problem instances from the literature shows the effectiveness of the proposed approach. The obtained results are compared to the results published by Alvarez-Valdes et al. (2002).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.