Abstract

The longest common subsequence (LCS) problem can be used to measure the relationship between sequences. In general, the inputs of the LCS problem are two sequences. For finding the relationship between one sequence and a set of sequences, we cannot apply the traditional LCS algorithms immediately. In this paper, we define the mosaic LCS (MLCS) problem of finding a mosaic sequence C, composed of repeatable k sequences in source sequence set S, such that the LCS of C and the target sequence T is maximal. Based on the concept of break points in sequence T, we first propose a divide-and-conquer algorithm with O ( n 2 m | S | + n 3 log k ) time for solving this problem, where n and m are the length of T and the maximal length of sequences in S, respectively. Furthermore, an improved algorithm with O ( n ( m + k ) | S | ) time is proposed by applying an efficient preprocessing for the MLCS problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.