Abstract

(1) Field potential study in conscious rats provides a convenient and effective animal model for pain mechanism and pharmacological research. However, the spatial-temporal character of nociception processing in cortex revealed by field potential technique in conscious rats remains unclear. (2) In the present study, multi-channel field potentials evoked by noxious laser stimulation applied to the hind paw of conscious rats were recorded through 12 chronically implanted skull electrodes. Independent component analysis (ICA) was used to remove possible artifacts and to extract the specific nociception-related component. (3) Two fast sharp responses and one slow blunt response were evoked by noxious laser stimulation. Systemic morphine (5 mg/kg, i.p.) preferentially attenuated the amplitude of the slow blunt response while had no significant effect on the first two sharp responses. ICA revealed that those responses came from activities of contralateral anterior parietal area, medial frontal area and posterior parietal area. A movement artifact was also detected in this study. Partial directed coherence (PDC) analysis showed that there were changes of information flows from medial frontal and posterior parietal area to anterior parietal area after noxious laser stimulation. (4) Characterization of the spatio-temporal responses to noxious laser stimulation may be a valuable model for the study of pain mechanisms and for the assessment of analgesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.