Abstract

Organochlorines are critical soil contaminants and the use of biochar has recently shown potential to improve soil remediation. However, little is known about biochar-microbe interactions nor the impact on environmental processes such as the immobilization and biodegradation of organochlorine compounds. In this study, we performed microcosm experiments to elucidate how biochar affected the biodegradation and sequestration of pentachlorophenol (PCP). Our results showed that the amendment of biochar markedly inhibited PCP biodegradation due to a strong sorption affinity for PCP under both aerobic and anaerobic conditions. Notably, the inhibitory effect was relatively weaker under anaerobic conditions than under aerobic conditions. The addition of biochar can dramatically shift the bacterial community diversity in the PCP-spiked soils. Under aerobic conditions, biochar significantly stimulated the growth of PCP-degrading bacteria Bacillus and Sphingomonas, but reduced the opportunities for microbes to contact with PCP directly. Under anaerobic conditions, the non-strict organohalide-respiring bacteria Desulfovibrio, Anaeromyxobacter, Geobacter and Desulfomonile were the main drivers of PCP transformation. Our results imply that the use of biochar as a soil remediation strategy for organochlorine compounds should be cautious.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call