Abstract

A newly developed method, NNPCA, integrates two data driven techniques, neural network (NN) and principal component analysis (PCA), for process monitoring. NN is used to summarize the operating process information into a nonlinear dynamic mathematical model. Chemical dynamic processes are so complex that they are presently ahead of theoretical methods from a fundamental physical standpoint. NN functions as the nonlinear dynamic operator to remove processes' nonlinear and dynamic characteristics. PCA is employed to generate simple monitoring charts based on the multivariable residuals derived from the difference between the process measurements and the neural network prediction. It can evaluate the current performance of the process. Examples from the recent monitoring practice in the industry and the large-scale system in the Tennessee Eastman process problem are presented to help the reader delve into the matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.