Abstract
Construction accident occurrences are essentially rare, stochastic, and dynamic. This study proposes a method for accident prediction that fully captures these natures based on historical data and prior knowledge. The method utilizes the relatively high occurrence frequency of precursor events and the dependency between precursors and accidents. The modeling approach consists of three steps: (1) characterize the stochastic occurrences of precursor events over time based on precursor data; (2) estimate the failure rate of the Poisson model which is assumed to be a prior distribution of accident occurrences; and (3) elicit the expert knowledge about the stochastic dependency between near miss occurrences and accident occurrences. A copula-based Markov model is used to develop the time series model of precursors while a copula-based protocol is proposed to aid expert judgment elicitation and quantification. The probability of accident occurrence is then dynamically updated according to the observed historical near miss numbers. The proposed method is applied to a metro construction project. A five-year long near miss data were collected and used as accident precursor data, while three experts were invited to provide relevant information. The developed accident model is used to predict the accident-prone periods, which are consistent with the months that the observed near miss occurrence frequency deviates significantly from normality. Thus, the model can be used to support the planning of necessary safety improvement programs before the accident risk increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.