Abstract
We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model performs a spectral decomposition of the scale matrix of a central Wishart distribution and assumes independent dynamics for the principal components' variances and the eigenvector processes. A three-step estimation procedure makes the model applicable to high-dimensional covariance matrices. We analyze the finite sample properties of the estimation approach and provide an empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good forecasting properties and outperforms its competitors for realized covariance matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.