Abstract

Online markets have become highly dynamic and competitive. Many sellers use automated data-driven strategies to estimate demand and to update prices frequently. Further, notification services offered by marketplaces allow to continuously track markets and to react to competitors’ price adjustments instantaneously. To derive successful automated repricing strategies is challenging as competitors’ strategies are typically not known. In this paper, we analyze automated repricing strategies with data-driven price anticipations under duopoly competition. In addition, we account for reference price effects in demand, which are affected by the price adjustments of both competitors. We show how to derive optimized self-adaptive pricing strategies that anticipate price reactions of the competitor and take the evolution of the reference price into account. We verify that the results of our adaptive learning strategy tend to optimal solutions, which can be derived for scenarios with full information. Finally, we analyze the case in which our learning strategy is played against itself. We find that our self-adaptive strategies can be used to approximate equilibria in mixed strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.