Abstract

To accommodate the increased demand for electric vehicle(EV) charging in China, this paper examines electric vehicle charging station(EVCS) location strategies from the perspective of private investors, taking full account of the competitive environment of existing EVCSs in the region. First of all, a three-level location model considering dynamic pricing is developed, which includes user decisions, EVCS pricing, and EVCS location decisions. Then, the soft actor-critic(SAC) reinforcement learning algorithm is used to train the optimal pricing strategy for EVCS to guarantee the maximum cumulative revenue. The proposed methodology is verified through case studies based on an industrial park in China. The results show that the proposed methodology can make more economical and scientific location decisions than the traditional method. The dynamic pricing method based on reinforcement learning can provide a reference for the location and operation of more EVCSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.