Abstract

The problem of the determination of dynamic pressures and the associated forces on a rigid, vertical cantilever wall retaining a semi-infinite, uniform, fully-saturated poroelastic layer of soil is solved analytically under conditions of plane strain. Hysteretic damping in the soil skeleton may also be present. The rigid wall and the base of the soil layer are both excited by an acceleration harmonically varying with time and spatially invariant. The governing partial differential equations of motion, after separation of variables and the simplifying assumption of zero vertical normal stresses, reduce to a system of two ordinary differential equations for the amplitudes of the horizontal solid skeleton displacement and the pore water pressure, which are easily solved. Soil displacements and stresses, wall pressures and resultant forces as well as the pore water pressure are explicitly expressed. Their variation with frequency, hysteretic damping, porosity and permeability is numerically computed in order to assess the relative importance of the various parameters on the response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.