Abstract

The natural gas quality fluctuates in complex natural gas pipeline networks, because of the influence of the pipeline transmission process, changes in the gas source, and fluctuations in customer demand in the mixing process. Based on the dynamic characteristics of the system with large time lag and non−linearity, this article establishes a deep−learning−based dynamic prediction model for calorific value in natural gas pipeline networks, which is used to accurately and efficiently analyze the dynamic changes of calorific value in pipeline networks caused by non−stationary processes. Numerical experiment results show that the deep−learning model can effectively extract the effects of non−stationary and large time lag hydraulic characteristics on natural gas calorific value distribution. The method is able to rapidly predict the dynamic changes of gas calorific value in the pipeline network, based on real−time operational data such as pressure, flow rate, and gas quality parameters. It has a prediction accuracy of over 99% and a calculation time of only 1% of that of the physical simulation model (built and solved based on TGNET commercial software). Moreover, with noise and missing key parameters in the data samples, the method can still maintain an accuracy rate of over 97%, which can provide a new method for the dynamic assignment of calorific values to complex natural gas pipeline networks and on−site metering management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.