Abstract

Reducing energy consumption in multiprocessor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate runtime control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, nonstationarity) observed in heterogeneous NoCs; if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings can be achieved at runtime while running a variety of benchmark applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.