Abstract

In this paper, a dynamic power management scheme (PMS) is proposed for a standalone hybrid ac/dc microgrid, which constitutes a photovoltaic (PV)-based renewable energy source, a proton exchange membrane fuel cell (FC) as a secondary power source, and a battery and a supercapacitor as hybrid energy storage. The power management algorithm accounts for seamless operation of the microgrid under various modes and state-of-charge limit conditions of hybrid energy storage when all the sources, storages, and loads are connected directly at the dc link. The PMS generates current references for dc converter current controllers of the FC, the battery, and the supercapacitor. The average and fluctuating power components are separated using a moving average filter. The dc-link voltage regulation under dynamic changes in load and source power variation is proposed. Also, PV power curtailment through control is formulated. The proposed power management is modified and extended to multiple PV generation systems and batteries, with all the sources and storages geographically distributed and operating under multitime-scale adaptive-droop-based control with supervisory control for mode transition. The proposed PMS is validated using simulation results. Also, field programmable gate array/Labview-based laboratory-scale experimental results are presented to validate the PMS under various critical conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.