Abstract

Virtual platform prototypes are widely used for early design space exploration at the system level. There is, however, a lack of accurate and fast power and performance models of hardware components at such high levels of abstraction. In this paper, we present an approach that extends fast functional hardware models with the ability to produce detailed, cycle-level timing and power estimates. Our approach is based on back-annotating behavioral hardware descriptions with a dynamic power and performance model that allows capturing cycle-accurate and data-dependent activity without a significant loss in simulation speed. By integrating with existing high-level synthesis (HLS) flows, back-annotation is fully automated for custom hardware synthesized by HLS. We further leverage state-of-the-art machine learning techniques to synthesize abstract power models, where we introduce a structural decomposition technique to reduce model complexities and increase estimation accuracy. We have applied our back-annotation approach to several industrial-strength design examples under various architecture configurations. Results show that our models predict average power consumption to within 1% and cycle-by-cycle power dissipation to within 10% of a commercial gate-level power estimation tool, all while running several orders of magnitude faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.