Abstract

This paper studies the adaptive dynamic positioning control problem of the full-actuated ship with uncertain time-varying environmental disturbances. Considering the disturbances with unknown boundaries, the inversion control technique is combined with the disturbance observation compensation method to design the robust adaptive backstepping control law of the ship dynamic positioning system. The Lyapunov function is adopted to prove the errors of the ship’s position and heading angle are uniformly ultimately bounded using the designed control law. The nonlinear disturbance observer can adaptively estimate and compensate for uncertain external disturbances caused by winds, waves and currents. Afterward, the verification of the proposed controller through a typical CyberShip Ⅱ model subject to environmental disturbances is carried out using a hardware-in-the-loop simulation where a thrust distribution model is established. The simulation results show the effectiveness of the proposed control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.