Abstract
This paper is concerned with a linear control policy for dynamic portfolio selection. We develop this policy by incorporating time-series behaviors of asset returns on the basis of coherent risk minimization. Analyzing the dual form of our optimization model, we demonstrate that the investment performance of linear control policies is directly connected to the intertemporal covariance of asset returns. To mitigate overfitting to training data (i.e., historical asset returns), we apply robust optimization. For this optimization, we prove that the worst-case coherent risk measure can be decomposed into the empirical risk measure and the penalty terms. Numerical results demonstrate that when the number of assets is small, linear control policies deliver good out-of-sample investment performance. When the number of assets is large, the penalty terms improve the out-of-sample investment performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.