Abstract

A rotating particle in electrorheological (ER) fluid leads to a displacement of its polarization charges on the surface which relax toward the external applied field E0, resulting in a steady-state polarization at an angle with respect to E0. This dynamic effect has shown to affect the ER fluid properties dramatically. In this paper, we develop a dynamic effective medium theory (EMT) for a system containing rotating particles of finite volume fraction. This is a generalization of established EMT to account for the interactions between many rotating particles. While the theory is valid for three dimensions, the results in a special two-dimensional configuration show that the system exhibits an off-diagonal polarization response in addition to a diagonal polarization response, which resembles the classic Hall effect. The diagonal response monotonically decreases with increasing rotational speed, whereas the off-diagonal response exhibits a maximum at a reduced rotational angular velocity omega0, compared to the case of isolated rotating particles. This implies a way of measurement on the interacting relaxation time. The dependencies of the diagonal and off-diagonal responses on various factors, such as omega0, the volume fraction, and the dielectric contrast, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.