Abstract

Solvation dynamics of 4-aminophthalimide (4AP) in methanol is measured by broadband upconversion of the fluorescence band. The peak emission frequency nu(t) is determined from 100 fs onward with 85 fs time resolution. Polar solvation based on simple continuum theory, including solute polarizability, describes the temporal shape of nu(t) quantitatively. Extrapolation nu(t-->0) points to an initial emission frequency which agrees with the result from stationary spectroscopy in a nonpolar solvent. The extent (4300 cm(-1)) of the dynamic Stokes shift is largely due (50%) to H-bonding, however. The observations imply that H-bonds with 4AP adiabatically follow the dielectric relaxation of the methanol network. The stimulated emission band is also used to measure solvation dynamics. The evolving band is monitored by transient absorption spectroscopy of supercontinuum probe pulses. But the excited-state absorption spectrum, its relative amplitude, and its evolution are needed to extract nu(t) from such measurements. These key data are obtained by comparison with the upconversion results. Thus calibrated photometrically, 4AP transient absorption can be used to monitor solvation dynamics in any solvent. The excited-state absorption spectrum is assigned with the help of time-dependent density-functional calculations. Fluorescence excitation and double-resonance spectroscopy of isolated 4AP, cooled in a supersonic jet, is used to determine optically active modes. An intramolecular reorganization energy is inferred which is consistent with the value in 2-methylbutane (2025 cm(-1)). The crystal structure is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.