Abstract

A curtain-type airbag is a safety device designed to protect passengers from the side collisions of a car. The curtain-type airbag system consists of an inflator, a fill-hose, and a curtain-airbag. The fill-hose is a passageway and distributor of the exploded gases from the inflator to the airbag through vent-holes. Although the design of vent-holes is important for proper deployment of the airbag, it is very difficult to measure the exceedingly high speed flow issuing from the vent-holes by using conventional measurement methods. In this study, we employed a dynamic PIV technique to measure the temporal evolution of instantaneous velocity fields of the flow ejecting from the vent-holes. From the velocity field data measured at a frame rate of 2000 fps, the temporal variation of the volume flux from vent-holes was also evaluated for the diagnosis of airbag performance. The flows ejecting from the vent-holes showed high velocity fluctuations, and the maximum velocity was about 480 m/s. The instantaneous velocity fields in the initial stage showed a swaying motion of a high-speed jet. The accumulated volume flux from the vent-holes was also compared at each vent-hole region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call