Abstract

Species differences in patterns of phenotypic plasticity may be an important aspect of adaptive diversity. Plasticity for functionally important root traits was studied in inbred field lineages of Polygonum persicaria and P. cespitosum (Polygonaceae). Replicate seedlings were grown in plexiglass rhizotrons under a range of constant and temporally variable moisture treatments. Plasticity was determined for final whole-plant biomass, root biomass allocation, and absolute and proportional root length. The dynamic aspect of root plasticity was examined by digitizing weekly tracings of the proportional deployment of each plant's root system to different vertical soil layers. Plants of both species expressed significant functionally adaptive phenotypic plasticity in the relative allocation, length, and vertical deployment of root systems in response to contrasting moisture conditions. Plasticity patterns in these closely related species were in general qualitatively similar, but for most traits differed in the magnitude and/or the timing of the plastic response. Dynamic changes in root deployment were more marked as well as faster in P. persicaria. Species differences in patterns of individual plasticity were generally consistent with the broader ecological distribution of P. persicaria in diverse as well as temporally variable moisture habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call