Abstract
System modeling and stability analysis is one of the most important issues of inverter-dominated microgrids. It is useful to determine the system stability and optimize the control parameters. The complete small signal models for the inverter-dominated microgrids have been developed, which are very accurate and could be found in literature. However, the modeling procedure will become very complex when the number of inverters in microgrid is large. One possible solution is to use the reduced-order small signal models for the inverter-dominated microgrids. Unfortunately, the reduced-order small signal models fail to predict the system instabilities. In order to solve the problem, a new modeling approach for inverter-dominated microgrids by using dynamic phasors is presented in this paper. Our findings indicate that the proposed dynamic phasor model is able to predict accurately the stability margins of the system, while the conventional reduced-order small signal model fails. In addition, the virtual ω-E frame power control method, which deals with the power coupling caused by the line impedance X/R characteristic, has also been chosen as an application example of the proposed modeling technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.