Abstract
We examine the dynamic phase transitions and the dynamic compensation temperatures, within a mean-field approach, in the mixed spin-3/2 and spin-5/2 Ising system with a crystal-field interaction under a time-varying magnetic field on a hexagonal lattice by using Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices with σ=3/2 and S=5/2. The Hamiltonian model includes intersublattice, intrasublattice, and crystal-field interactions. The intersublattice interaction is considered antiferromagnetic and to be a simple but interesting model of a ferrimagnetic system. We employ the Glauber transition rates to construct the mean-field dynamic equations, and we solve these equations in order to find the phases in the system. We also investigate the thermal behavior of the dynamic sublattice magnetizations and the dynamic total magnetization to obtain the dynamic phase transition points and compensation temperatures as well as to characterize the nature (continuous and discontinuous) of transitions. We also calculate the dynamic phase diagrams including the compensation temperatures in five different planes. According to the values of Hamiltonian parameters, five different fundamental phases, three different mixed phases, and six different types of compensation behaviors in the Neel classification nomenclature exist in the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.