Abstract
AbstractTopological boundary states localize at interfaces whenever the interface implies a change of the associated topological invariant encoded in the geometric phase. The generically present dynamic phase, however, which is energy and time‐dependent, is known to be non‐universal, and hence not to intertwine with any topological geometric phase. Using the example of topological zero modes in composite Su‐Schrieffer‐Heeger (c‐SSH) waveguide arrays with a central defect is reported on the selective excitation and transition of topological boundary mode based on dynamic phase‐steered interferences. This work thus provides a new knob for the control and manipulation of topological states in composite photonic devices, indicating promising applications where topological modes and their bandwidth can be jointly controlled by the dynamic phase, geometric phase, and wavelength in on‐chip topological devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.