Abstract

A new method for the experimental determination of the permeability of a small sample of a fluid-saturated hierarchically structured porous material is described and applied to the determination of the lacunar-canalicular permeability [Formula: see text] in bone. The interest in the permeability of the lacunar-canalicular pore system (LCS) is due to the fact that the LCS is considered to be the site of bone mechanotransduction due to the loading-driven fluid flow over cellular structures. The permeability of this space has been estimated to be anywhere from [Formula: see text] to [Formula: see text]. However, the vascular pore system and LCS are intertwined, rendering the permeability of the much smaller-dimensioned LCS challenging to measure. In this study, we report a combined experimental and analytical approach that allowed the accurate determination of the [Formula: see text] to be on the order of [Formula: see text] for human osteonal bone. It was found that the [Formula: see text] has a linear dependence on loading frequency, decreasing at a rate of [Formula: see text]/Hz from 1 to 100 Hz, and using the proposed model, the porosity alone was able to explain 86 % of the [Formula: see text] variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call