Abstract

The ozonation of a nonionic surfactant, Sannonic SS-90 (polyoxyethylene alkyl ether), which is one of polyoxyethylene nonionic surfactants, in water has been investigated using a bubble column. The effects of initial nonionic surfactant concentration, ozone gas flow rate, inlet ozone concentration in the gas-phase, liquid-phase temperature and hydrogen peroxide dose on decomposition of Sannonic SS-90 were systematically examined. The decomposition rate of Sannonic SS-90 decreased with the increase in the initial surfactant concentration and increased with increasing ozone flow rate and temperature. It was found that the rate of Sannonic SS-90 mineralization was weakly dependent on the gas-phase inlet ozone concentration in the range of the gas-phase inlet ozone concentration in this study. The oxidation rate increased with increasing concentration of H2O2, reached a maximum value and then decreased with further increasing of H2O2 concentration. The dynamic performance of the ozonation in a semi-batch bubble column was simulated using a mathematical model based on a tanks-in-series model. Reasonable agreement between the present experimental data and the simulated results was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call