Abstract

Abstract This study compares the performance influences for four kinds of tread contour features commonly used in High-Speed trains. The Hopf bifurcation characteristic influencing the dynamic performance for VEHICLE 1 and VEHICLE 2 were analyzed using mathematical matrices models. SIMPACK software was used to create two dynamic models for VEHICLE 1 and VEHICLE 2 for high speed trains equipped with four kinds of treads matched with Chinese 60 rail. Dynamic performance indices for these models were studied during operation in straight track conditions with imposed high interference German track irregularity spectra with the premise of dynamic performance normalized indices processing. The study shows that: VEHICLE 1 exhibits a subcritical bifurcation characteristic under different wheel-rail matching conditions. VEHICLE 2 dynamic performance index values do not increase as speed increases, but wear index gradually increased with increased speed. Vehicles with different structural parameters, wheel-rail matching greatly influences bifurcation stability, comfort and wheel-rail wear. This method indicates an important reference value for wheel-rail matching in high-speed trains and structural parameters of stability and safety for these vehicle systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.