Abstract

Abstract This paper addresses the transient stability problem in power systems of nonlinear character. A recursive nonlinear backstepping controller for improving the single machine infinite bus system’s dynamic behavior is proposed for the system global stabilization considering the network transfer conductances. Despite parameters uncertainties, nonlinear dynamics and/or disturbances, the feedback laws based on the backstepping approach are explicitly derived and the conservatism of the stability property is guaranteed for both lossy and lossless power system representations. Simulation results, via MATLAB™-Simulink, reveal that the proposed backstepping technique can be feasibly designed to ensure significant dynamic performance enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.