Abstract
Hadoop MapReduce as a service from cloud is widely used by various research, and commercial communities. Hadoop MapReduce is typically offered as a service hosted on virtualized environment in Cloud Data-Center. Cluster of virtual machines for MapReduce is placed across racks in Cloud Data-Center to achieve fault tolerance. But, it negatively introduces dynamic/heterogeneous performance for virtual machines due to hardware heterogeneity and co-located virtual machine's interference, which cause varying latency for same task. Alongside, curbing number of intermediate records and placing reduce tasks on right virtual node are also important to minimize MapReduce job latency further. In this paper, we introduce Multi-Level Per Node Combiner to minimize the number of intermediate records and Dynamic Ranking based MapReduce Job Scheduler to place reduce tasks on right virtual machine to minimize MapReduce job latency by exploiting dynamic performance of virtual machines. To experiment and evaluate, we launched 29 virtual machines hosted in eight different physical machines to run wordcount job on PUMA dataset. Our proposed methodology improves overall job latency up to 33% for wordcount job.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.