Abstract

The use of high voltage direct current based voltage source converter (VSC-HVDC) in power transmission systems knows a great progress in recent years. Above all, with the new generation of power electronics converters such as the modular multi-level converter (MMC), with his scalable structure it can theoretically meet any voltage level requirement, which allows to increase the size of the power transferred compared to conventional converters. In this sense, this paper presents a study of a VSC-HVDC system based on a modular multi-level converter (MMC). The main objective of this work is to analyze the performance of the VSC-HVDC system based MMC without the AC filters and its control in the event of a fault, during set point changes and unbalanced grid conditions. After realization a mathematical model of the system studied and its control, simulations are done over in Simpower System/Matlab. The results obtained confirm the robustness of the system control and the system gives a good energy quality, that manifests by a good output currant and voltage curves with no need to use a voluminous AC filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call