Abstract

Abstract Piezoelectric materials have been widely used in modern science and technology due to their electro-mechanical coupling response. Sometimes, because of the stiff and brittle nature of some piezoelectric materials, the piezoelectric devices with defects may face fracture or failure during their service procedures. Therefore, it has become important to investigate the failure behaviors caused by defects, such as cracks and holes. Based on the study of the dynamic anti-plane characteristics for radial crack emanating from a circular cavity in piezoelectric bi-materials, this paper aims to analyzes the dynamic incident anti-plane shearing (SH-wave) in piezoelectric bi-materials, which contains two interfacial cracks, near an eccentric elliptical hole. Green’s function method, the conformal mapping method, the interface conjunction techniques and the crack-deviation techniques are utilized to obtain a series of first kind Fredholm’s equations, based on which the dynamic stress intensity factor (DSIF) at the outer and the inner cracks’ tips are theoretically expressed. Numerical examples were graphically presented to illustrate the effects of the piezoelectric parameter, the effective piezoelectric elastic modulus, the dimensionless incident wave number and geometric parameters on the DSIF at both of the tips. Previous studies are not comprehensive, especially when the center of the hole deviates from the interface. Therefore, the impact of eccentric distance on DSIF is considered in this paper. The solution of this problem provides a more accurate and efficient method for the investigation of dynamic fracture properties of piezoelectric materials and has an important theoretical significance in engineering design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.