Abstract

Planning assessment of urban walking infrastructure requires appropriate modeling methodologies that capture the time-dependent and unique microscopic characteristics of bidirectional pedestrian streams. In this paper, we develop a simulation-based dynamic pedestrian traffic assignment (DPTA) model specifically formulated for walking networks (e.g. sidewalks) with bidirectional links. The model consists of a dynamic user equilibrium (DUE) based walking route choice and a link transmission model (LTM) for network loading. The formulated DUE adopts a pedestrian volume delay function (pVDF) taking into account the properties of bidirectional pedestrian streams such as self-organization. The adopted LTM uses a three-dimensional triangular bidirectional fundamental diagram as well as a generalized first-order node model. The applicability and validity of the model is demonstrated in hypothetical small networks as well as a real-world large-scale network of sidewalks in Sydney. The model successfully replicates formation and propagation of shockwaves in walking corridors and networks due to bidirectional effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.