Abstract

Planning assessment of urban walking infrastructure requires appropriate modeling methodologies that capture the time-dependent and unique microscopic characteristics of bidirectional pedestrian streams. In this paper, we develop a simulation-based dynamic pedestrian traffic assignment (DPTA) model specifically formulated for walking networks (e.g. sidewalks) with bidirectional links. The model consists of a dynamic user equilibrium (DUE) based walking route choice and a link transmission model (LTM) for network loading. The formulated DUE adopts a pedestrian volume delay function (pVDF) taking into account the properties of bidirectional pedestrian streams such as self-organization. The adopted LTM uses a three-dimensional triangular bidirectional fundamental diagram as well as a generalized first-order node model. The applicability and validity of the model is demonstrated in hypothetical small networks as well as a real-world large-scale network of sidewalks in Sydney. The model successfully replicates formation and propagation of shockwaves in walking corridors and networks due to bidirectional effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call