Abstract

We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO$_3$ by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. Using orthogonal linear x-ray polarizations, we suceeded in disentangling the response of the multiferroic cycloidal spin order from the sinusoidal antiferromagnetic order in the time domain. This enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond timescale. The transient phase is shown to be a spin density wave, as in the adiabatic case, which nevertheless retains the wave vector of the cycloidal long range order. Two different pump photon energies, 1.55 eV and 3.1 eV, lead to population of the conduction band predominantly via intersite $d$-$d$ transitions or intrasite $p$-$d$ transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a timescale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic and orbital orders. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such complex theoretical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call