Abstract

AbstractDynamic path planning is a core research content for intelligent robots. This paper presents a CG-Space-based dynamic path planning and obstacle avoidance algorithm for 10 DOF wheeled mobile robot (Rover) traversing over 3D uneven terrains. CG-Space is the locus of the center of gravity location of Rover while moving on a 3D terrain. A CG-Space-based modified RRT* samples a random space tree structure. Dynamic rewiring this tree can handle the randomly moving obstacles and target in real time. Simulations demonstrate that the Rover can obtain the target location in 3D uneven dynamic environments with fixed and randomly moving obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.