Abstract

This paper presents a path planning approach to the transportation of biological cells with combined robotics and optical tweezers technologies. A rapid path planner based on RRT (Rapidly-exploring random trees) algorithm is applied to find a collision-free path for automatic cell transportation. The optical tweezers are employed to trap and move the cell along the generated path toward a pre-specified goal position. Extending our early reported work on static path planning, a new dynamic path planner that considers the environmental change due to the Brownian movement of the cells is developed. This dynamic path planner can successfully enable the trapped cell to avoid collisions with other cells during transportation in a dynamic environment. Experiments on transporting yeast cells are performed to demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.