Abstract

This work is concerned with planning collision-free paths for a robot arm moving in an environment filled with unknown obstacles, where any point of the robot body is subject to collision. To compensate for the uncertainty, the system is provided with sensory feedback information about its immediate surroundings. In such a setting, which presents significant practical and theoretical interest, human intuition is of little help, and designing algorithms with proven convergence thus becomes an important task. We show that, given the target position, local feedback information is sufficient to guarantee reaching a global objective (the target position) and present a nonheuristic algorithm which generates reasonable—if, in general, not optimal—collision-free paths. In this approach, the path is being planned continuously (dynamically), based on the arm's current position and on the sensory feedback. Here, a case of a planar arm with two revolute joints is studied. No constraints on the shape of the robot links or the obstacles are imposed. The general idea is to reduce the problem of motion planning to an analysis of simple closed curves on the surface of an appropriate two-dimensional manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.