Abstract

A new numerical procedure for the study of finite temperature quantum dynamics is developed. The method is based on the observation that the real and imaginary time dynamical data contain complementary types of information. Maximum entropy methods, based on a combination of real and imaginary time input data, are used to calculate the spectral densities associated with real time correlation functions. Model studies demonstrate that the inclusion of even modest amounts of short-time real time data significantly improves the quality of the resulting spectral densities over that achievable using either real time data or imaginary time data separately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call