Abstract

This paper proposes dynamic cache partitioning amongst simultaneously executing processes/threads. We present a general partitioning scheme that can be applied to set-associative caches. Since memory reference characteristics of processes/threads can change over time, our method collects the cache miss characteristics of processes/threads at run-time. Also, the workload is determined at run-time by the operating system scheduler. Our scheme combines the information, and partitions the cache amongst the executing processes/threads. Partition sizes are varied dynamically to reduce the total number of misses. The partitioning scheme has been evaluated using a processor simulator modeling a two-processor CMP system. The results show that the scheme can improve the total IPC significantly over the standard least recently used (LRU) replacement policy. In a certain case, partitioning doubles the total IPC over standard LRU. Our results show that smart cache management and scheduling is essential to achieve high performance with shared cache memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call