Abstract

Shared cache interference in multi-core architectures has been recognized as one of major factors that degrade predictability of a mixed-critical real-time system. Due to the unpredictable cache interference, the behavior of shared cache is hard to predict and analyze statically in multi-core architectures executing mixed-critical tasks, which will not only result in difficulty of estimating the worst-case execution time (WCET) but also introduce significant worst-case timing penalties for critical tasks. Therefore, cache management in mixed-critical multi-core systems has become a challenging task. In this paper, we present a dynamic partitioned cache memory for mixed-critical real-time multi-core systems. In this architecture, critical tasks can dynamically allocate and release the cache resourse during the execution interval according to the real-time workload. This dynamic partitioned cache can, on the one hand, provide the predicable cache performance for critical tasks. On the other hand, the released cache can be dynamically used by non-critical tasks to improve their average performance. We demonstrate and prototype our system design on the embedded FPGA platform. Measurements from the prototype clearly demonstrate the benefits of the dynamic partitioned cache for mixed-critical real-time multi-core systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call