Abstract
It is realized that the topological structure of the particle swarm optimization (PSO) algorithm has a great influence on its optimization ability. This paper presents a new dynamic small-world neighborhood PSO (D-SWPSO) algorithm whose neighbourhood structure can be constructed with any irregular initial networks. The choice of the learning exemplar is not only based upon the big clustering coefficient and the average shortest distance for a regular network, but also based upon the eigenvalues of Laplacian matrix for irregular networks. Therefore, the D-SWPSO is a PSO algorithm based on small-world topological neighbourhood with universal significance. The proposed algorithm is tested by some typical benchmark test functions, and the results confirm that there is a significant improvement over the basic PSO algorithm. Finally, the algorithm is applied to a real-world optimization problem, the economic dispatch on the IEEE30 system with wind farms. The results demonstrate that the proposed D-SWPSO is a practically feasible and effective algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Swarm Intelligence Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.