Abstract
In this paper, we develop a dynamic partially functional linear regression model in which the functional dependent variable is explained by the first order lagged functional observation and a finite number of real-valued variables. The bivariate slope function is estimated by bivariate tensor-product B-splines. Under some regularity conditions, the large sample properties of the proposed estimators are established. We investigate the finite sample performance of the proposed methods via Monte Carlo simulation studies, and illustrate its usefulness by the analysis of the electricity consumption data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.