Abstract
This paper concerns the problem of dynamic output-feedback control for a class of nonlinear systems with nonuniform uncertain sampling via Takagi-Sugeno (T-S) fuzzy control approach. The sampling is not required to be periodic, and the state variables are not required to be measurable. A new type fuzzy dynamic output-feedback sampled-data controller is constructed, and a novel time-dependent Lyapunov-Krasovskii functional is chosen for fuzzy systems under variable sampling. By using Lyapunov stability theory, a sufficient condition for very-strict passive analysis of fuzzy systems with nonuniform uncertain sampling is derived. Based on this condition, a novel fuzzy dynamic output-feedback controller is designed such that the closed-loop system is very-strictly passive. The existence condition of the controller can be solved by convex optimization approach. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.