Abstract

This paper presents a framework to design a robust dynamic output feedback (DOF) controller for a class of nonlinear systems, based on the adaptive event-triggered control (AETC) method. The considered system contains parametric uncertainty and to design the event-triggered mechanism (ETM) Finite-gain L2 stability criteria are used. In this paper, a robust adaptive event-triggered mechanism (AETM) is first designed using a pre-designed controller. Then, in a co-design approach, the AETM and the DOF controller are designed together to increase the closed-loop performance. Indeed, the matrices of the DOF controller and the sufficient conditions for the AETM are obtained simultaneously. These conditions are represented as linear matrix inequalities (LMIs) and lead to a significant increase in the update interval. Moreover, the proposed design method guarantees the stability of the closed-loop system in the presence of the proposed triggering event. Finally, to illustrate the performance of the controller three examples are simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.