Abstract

This paper aims to present an approach for design of dynamic output feedback compensators for linear discrete-time descriptor systems subject to state and control constraints. To this end, output-feedback controlled-invariant polyhedra are constructed by taking a pair of polyhedral sets: a controlled-invariant set and a conditioned-invariant set. By defining an augmented system composed of the original system plus the dynamic compensator, a control action can be computed online, which optimizes the contraction rate of the augmented state trajectory and enforces the constraints. The results are illustrated through numerical examples, which show that the proposed dynamic compensators outperform static feedback controllers under the same conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.