Abstract
This paper addresses the dynamic output feedback control problem for a class of discrete system with uncertainties and multiple time-delays. First, the system is decomposed into two subsystems based on the output matrix and input control matrix. Secondly, a dynamic compensator is employed for the first subsystem, and then, given the multiple uncertainties, the output feedback controller is designed based on the second subsystem and the dynamic compensator. Thirdly, by choosing the Lyapunov-Krasovskii function, it can be seen that the developed controller makes the closed-loop system convergent to an adjustable region, which can be rendered arbitrary small by adjusting design parameters. Compared with the previous researches, the proposed controller is not only smooth and memoryless, but also only dependent on the system output. Furthermore, with the given dynamic compensator, the controller design conditions are relaxed, while the approach is extended to the conventional nonlinear system. Finally, numerical example is given to illustrate the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.