Abstract

AbstractThe dynamic origin of the interannual variability of West China autumn rainfall (WCAR), a special weather/climate phenomenon over western-central China in September and October, was investigated via observational diagnosis and numerical simulations. Here we found that the interannual variability of WCAR is closely related to the local horizontal trough, which is passively induced by two lower-level anticyclonic (high pressure) anomalies over East Asia. The anticyclonic anomaly over the south is a Gill-type response to the central and eastern Pacific diabatic cooling, while that over the north is part of the mid- to high-latitude barotropic Rossby wave train, which could be induced by either the thermal forcing of the central and eastern Pacific Ocean sea surface temperature (SST) cooling or that of the subtropical northern Atlantic Ocean SST warming. The quasi-barotropic high pressure anomaly over East Asia acts as an “invisible mountain” that steers the low-level anomalous southwesterly into a southeasterly and hinders the water vapor going farther to the north, leading to enhanced WCAR. However, the real mountain ranges in the region (the Qinglin and Ba Mountains) have no essential impact on the formation and interannual variability of WCAR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call