Abstract

This paper presents a novel dynamic optimization framework for the grinding process in batch production. The grinding process exhibits time-varying characteristics due to the progressive wear of the grinding wheel. Nevertheless, many existing frameworks for the grinding process can optimize only 1 cycle at a time, thereby generating suboptimal solutions. Moreover, dynamic scheduling of dressing operations in response to process feedback would require significant human intervention with existing methods. We propose a unique dynamic programming–evolution strategy framework to optimize a series of grinding cycles depending on the wheel condition and batch size. In the proposed framework, a dynamic programming module dynamically determines the frequency and parameter of wheel dressing while the evolution strategy locates the optimal operating parameters of each cycle subject to the constraints on the operating ranges and part quality. Case studies based on experimental data are conducted to demonstrate the advantages of the proposed method over conventional approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.