Abstract

In this study, optimal vapor release rate (or pressure) histories have been generated for an industrial semi-batch nylon 6 reactor using Pontryagin's minimum principle. The batch time has been taken as the objective function, which is to be minimized. The pressure is constrained to lie between a lower and an upper limit. The temperature, a state variable, is also constrained to lie between 220°C and 270°C in order to ensure single-phase polymerization. Optimization has been carried out with a single end-point constraint (on monomer conversion) and a stopping condition (obtaining a product having a desired degree of polymerization, μn). Techniques have been developed to overcome the discontinuities present in the model, as well as to take care of state variable constraints. The effects of various physical and computational variables on the optimal pressure history and the corresponding batch time have been studied. It is found that the optimal batch time is almost 50% of the industrial value used currently. Interestingly, the optimal pressure history is quite similar qualitatively with the current practice though quantitatively there is a significant difference. Improvements in reactor operation along these lines have been reported. © 1996 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.